

John Hsu Nate Koenig

ROSCon 2012

Outline

What is Gazebo, and why should you use it

Overview and architecture

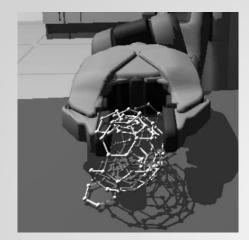
Environment modeling

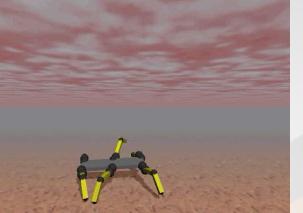
Robot modeling

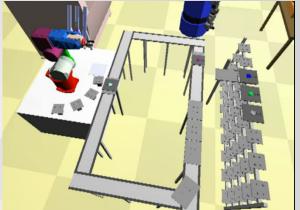
Interfaces

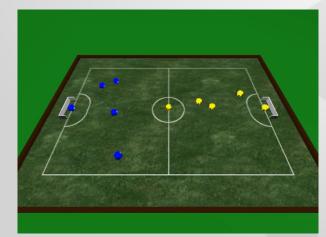
Getting Help

Simulation for Robots


Towards accurate physical simulation


Easy transition to and from simulation Remove hardware issues and resource constraints


Support common robot control software


- Custom client code
- ROS interface
- **Player interfaces**

Use Cases

Overview & Architecture

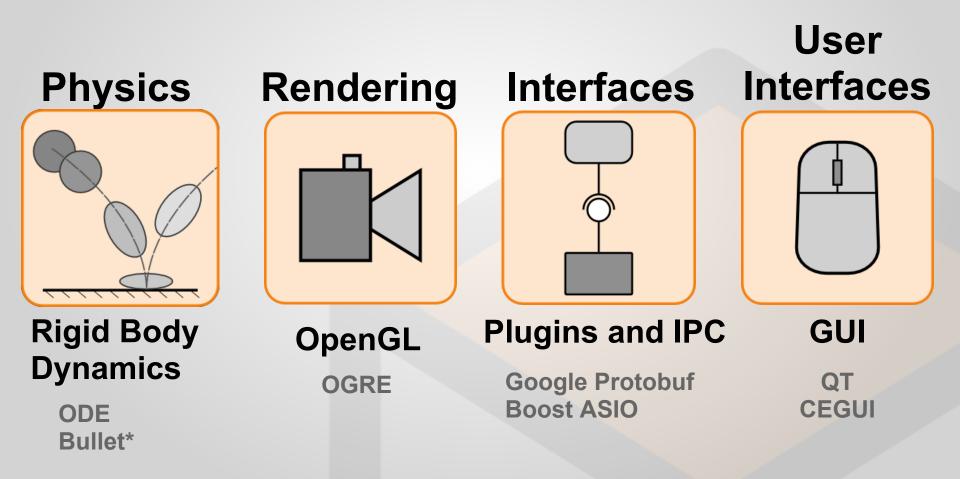
New in 1.0

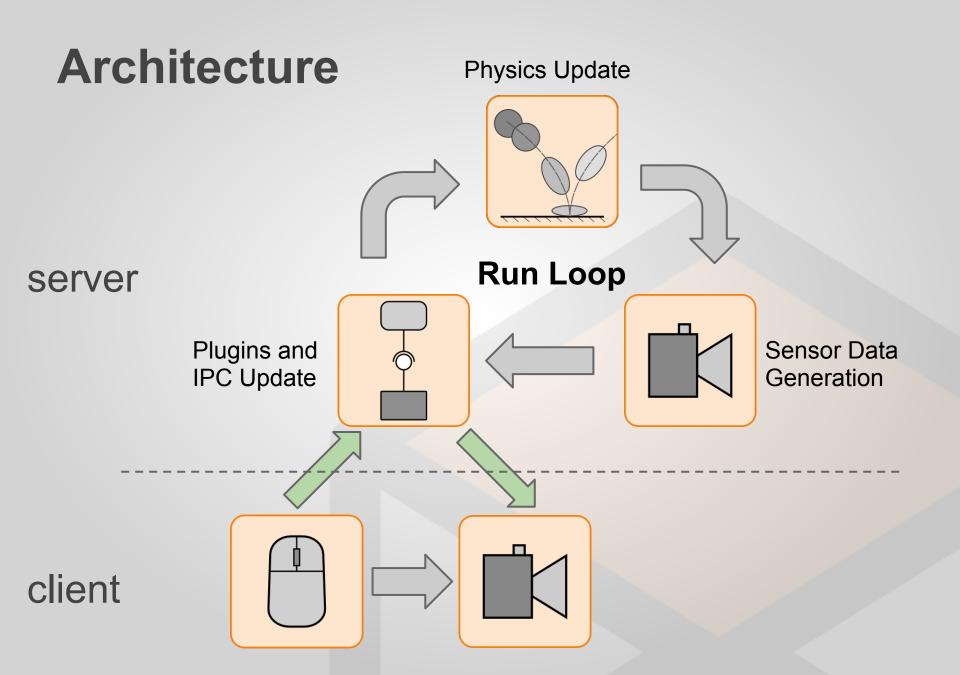
Separation of physics and visualization

server: physics and sensor generation client: visualization and user interface

Socket communication

Protobuf provides message passing


Simplified plugin interface


Control any aspect of simulation

Simulation Description Format (SDF)

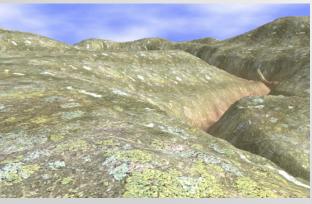
XML based format for worlds and models

Architecture

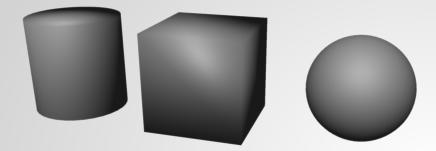
Environment Modeling

Environments

Simple



Focused scenario Manipulation Perception


Indoor

Path planning Mobile manipulation Clone real environment

Aerial robots Outdoor mobile and legged robots Outdoor

Creating Environments

Built into Gazebo

3D Warehouse or model editor

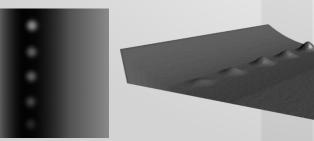


Image editor

A Word on Meshes

Alignment and size

Move meshes to origin (0,0,0) when exporting Stay consistent with units (preferably metric)

Materials and lighting

Ambient and diffuse color properties are important Lighting requires outward facing normals Improve texture quality before mesh quality

Efficient meshes

Reduce polygon count Use normal maps for improved lighting

Organizing Resources

Directory structure for a project

Meshes: [project_path]/Media/models Images: [project_path/]Media/materials/textures Materials: [project_path]/Media/materials/scripts

Environment variable export GAZEBO_RESOURCE_PATH=[project_path]

API

gazebo::SystemPaths::AddGazeboPaths(string);

Efficient Environments

Static Models

Not dynamically simulated Act only as collision objects Static models can be animated

Reduce Joints

Create models using composite links

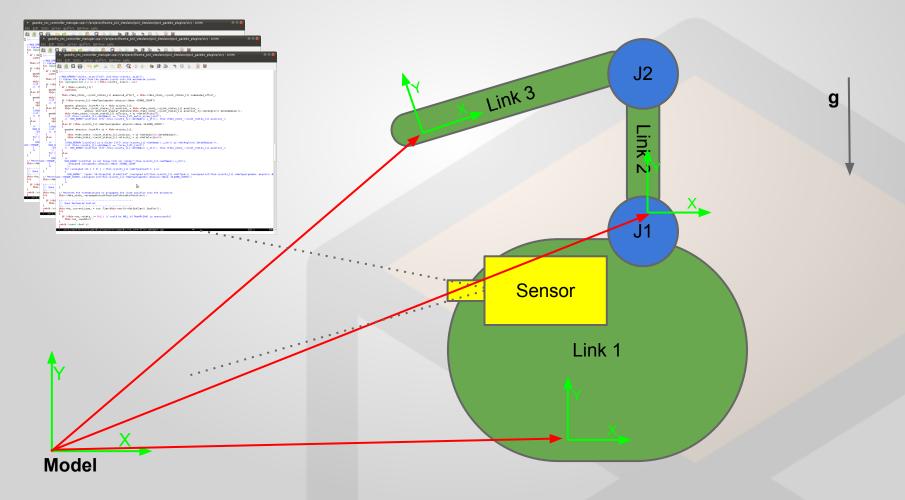
Add Visual Realism

Lighting

Limit number of lights, and reduce ambient light Use directional lights for shadows Desired effects requires parameter tuning

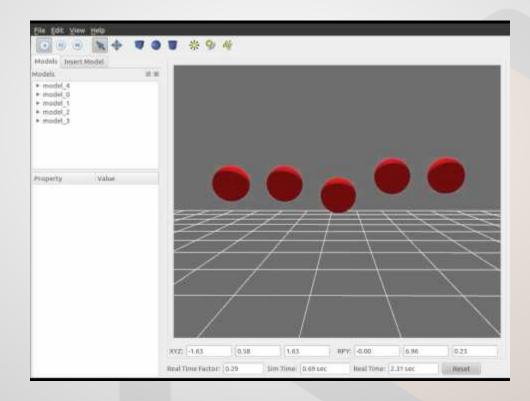
Custom shaders

Create and load vertex and pixel shader via material scripts

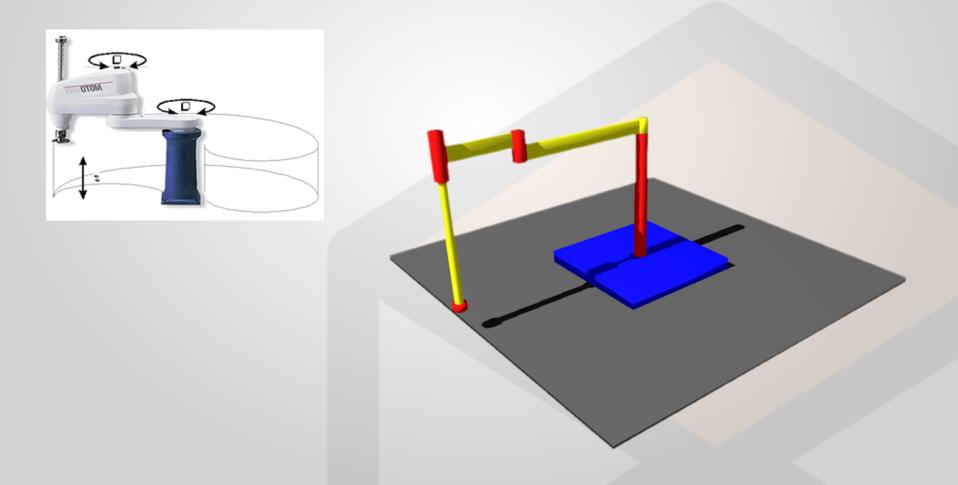

Sky and fog

Add any material to a sky dome Fog can add a horizon and add sense of distance

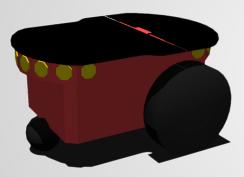
Robot Modeling


What is a Robot (Model)?

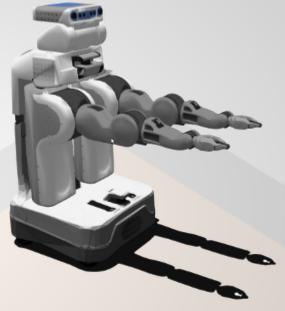
A collection of links, joints, sensors, actuators and plugins.


Example: Mass Spring System

Simple mass spring system in Gazebo:



Example: SCARA Arm


Simplified arm model

Robot Models

Simple platforms

Built-in shapes Mesh skinning

Realistic physical properties

Meshes as collision objects Mass and inertia properties Surface friction 6 joint types

Full sensor suite

Laser range finders Mono/Stereo cameras Kinect Contact Joint force/torques

Why 3D Dynamics Simulator

Dynamics simulation

"Looks right" interactive mechanical behaviors

Non-interactive higher fidelity dynamics

Visual simulation

3D image, range, depth sensor generation

Closing the loop between visual and dynamics simulation.

What to Expect (Dynamics)

Motion

Newton-Euler equations. First order time integrator.

Constraints

Frictionless joints.

Collision

Perfectly inelastic collision*.

Contact

Friction pyramid.

Modeling: URDF and SDF

How to specify a robot model

URDF format and SDF format

URDF vs SDF

URDF	SDF
 Tree Link> Link transforms Link and Joint + "Extensions" 	 Graph Model> Link transforms Link, Joint, Sensors, Plugins, Lights, Physics, Scene.

URDF --> SDF converters

rosrun urdf2model -f <urdf> -o <sdf>

Contributing robot models

Soon to be released online model database

What are Links

Inertial (mass, moment of inertia)

The "M" in f=Ma for physics engines

Collision (geometry)

Used by collision engine to generate contact joints for the physics engine

Visual (geometry)

Used by render engine to generate images for GUI and camera or depth sensors

Joints

User defined joints

Туре	DOF	Туре	DOF
revolute	1 rotational	universal	2 rotational
prismatic	1 translational	ball	3 rotational
revolute2	2 rotational	screw	1 trans. 1 rot.

Dynamically created

Contact joints between objects

Created from colliding collision geometries Limited to 20 contacts for each colliding pair by default

Contact information accessible through Contact Sensor

Sensors

Camera

Render to offscreen buffer

Kinect

Depth camera

Laser

CPU and GPU based ray casting

Contact

Generated by collision engine

RFID

Information generated from model positions

Force torque

Specific to joints at the moment

Efficient Robot Models

Physics (CPU):

Limit contacts (<physics max_contacts="3"/>) Kinematic trees are better than loops Reduce number of joints in a model

Collision (CPU):

Primitives are more efficient than trimeshes Limit collision mesh size (< ~5k triangles per link)

Rendering (GPU):

Limit visual mesh size (< ~5k triangles per link) Limit image/depth sensor resolution or rate

How to Improve Dynamics Accuracy

...with maximal (Cartesian) coordinate solvers such as ODE or Bullet.

How to choose time step size: Motor controller frequency driven. First order Euler time stepping O(Δt).

How to tweak solver parameters:

<solver type="quick" iters="100"/> Default 10 iterations for LCP solve, increase if necessary.

Model physics of the real robot more closely Account for more details. E.g. prismatic vs. screw.

Controlling the Robot Model

Graphical joint control widget in Gazebo

Direct force control. PID position and velocity.

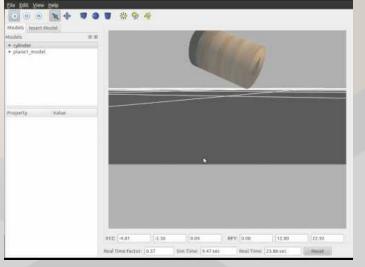
Programmatic control

Model: simple_grippe	r	Reset
Force Position Ve	locity	
	Radians 🛟 P Gain I G	Gain D Gain
palm_left_finger	0.000 1.000 1.000	0.100 🗘 0.010 🌲
left_finger_tip	0.000 1 1.000 1	0.100 🗘 0.010 🗘
palm_right_finger	0.000 1.000 1.000	0.100 🗘 0.010 🌲
right_finger_tip	0.000 1.000 1.000	0.100 🗘 0.010 🌲
palm_riser	0.000 1 1.000 1	0.100 🗘 0.010 🌲
fixed_riser	0.000 1 1.000 1	0.100 🗘 0.010 🇘

Joint Control

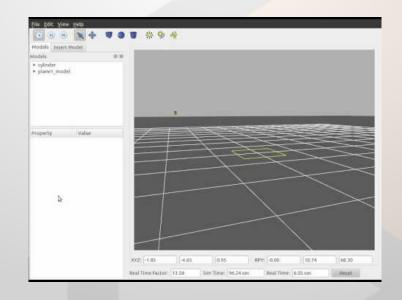
Level of abstraction, hardware/software transparency. World plugins: access to all models. Model plugins: access to all joints and links.

Mesh is out of place or has improper scale


Recenter and scale mesh using 3D modeling application

Enable "Show Collisions" in GUI to debug

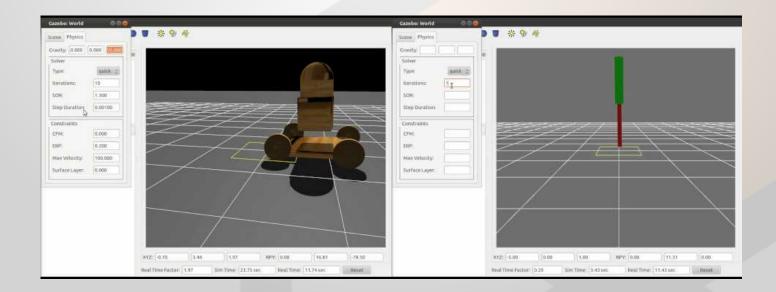
Improper joint placement and rotation


Enable "Show Joints" in GUI to debug

Improper inertial values

Symptom: Model flies away, spins out of control

Cause: Interpenetration with surroundings Solution: Step through simulation slowly. Check for collisions, interpenetrations between model/ground. Spawn model away from other objects.



Symptom: Model spins out of control

Cause: Large accelerations (f >> m) **Solution**: Remove forces, e.g. disable plugins that sets forces on joints or links, and see if problem goes away Look for tiny inertia values.

Symptom: Model is jittery

Cause: Stiff system. Large mass ratio between connected links Solution: Reduce time step size or increase inner iteration counts

Interfaces

Plugins

Programmatic interface to Gazebo Types

System: Control the load and init process World: All models and physics engine Model: Joints and links Sensor: Control data generation and processing

Use cases

System: Specify custom search paths World: Dynamically change physics engine Model: Joint controller, such as a differential drive Sensor: Data filtering or add noise models

Creating Plugins

Reference

Gazebo wiki tutorials and API specification

Examples distributed with the gazebo sources

ROS plugins

Gazebo ROS package provides interface between Gazebo and ROS framework gazebo plugins ROS package

Contribute plugins

Submit patches to Gazebo Near future: Online database for plugins

Interprocess Communication

Topics

Usage nearly identical to ROS PublisherPtr pub = node->Advertise<*msg_type*>(*topic_name*); SubscriberPtr sub = node->Subscribe(*topic_name*, *callback*);

Topics vs plugins

Topics: Run server remotely, start & stop client Plugins: Access to complete API, updates every cycle

Commandline Tools

Gazebo tools

System inspection: gztopic, gzstats Insert and remove models: gzfactory

ROS tools

rosrun gazebo spawn_model rosrun gazebo urdf2model

Getting Help

ROS Answers

answers.ros.org Gazebo mailing list gazebosim.org/support.html Wiki and Tutorials gazebosim.org/wiki Contributing code

Submit patches (kforge.ros.org/gazebo/trac) Send email to mailing list for suggestions

Questions

Plugin Examples

Differential Drive

Controls two joints attached to a chassis and wheels Accepts velocity commands, produce joint torques Example usage: Pioneer2dx mobile base

ROS PR2 Controller

gazebo_ros_controller_manager ROS plugin Mimics the real PR2 motors at transmission level Allows code developed in simulation run on a real PR2

Topic Examples

Graphical Interface

All communication between the server and client is handled via topics

Player Interface

Plugins are loaded into Player which then communicate to Gazebo via Topics

Command line tools

Report statistics and offer basic world control functionality