
John Hsu
Nate Koenig

ROSCon 2012

Outline

What is Gazebo, and why should you use it

Overview and architecture

Environment modeling

Robot modeling

Interfaces

Getting Help

Simulation for Robots

Towards accurate physical simulation
Easy transition to and from simulation
Remove hardware issues and resource constraints

Support common robot control software
Custom client code
ROS interface
Player interfaces

Use Cases

Overview & Architecture

New in 1.0

Separation of physics and visualization
server: physics and sensor generation
client: visualization and user interface

Socket communication
Protobuf provides message passing

Simplified plugin interface
Control any aspect of simulation

Simulation Description Format (SDF)
XML based format for worlds and models

Architecture

Physics Rendering Interfaces

Rigid Body
Dynamics

OpenGL Plugins and IPC

ODE
Bullet*

OGRE Google Protobuf
Boost ASIO

GUI
QT

CEGUI

User
Interfaces

Architecture

server

client

Run Loop

Physics Update

Sensor Data
Generation

Plugins and
IPC Update

Environment Modeling

Environments
Simple

Focused scenario
Manipulation
Perception

Aerial robots
Outdoor mobile and legged robots

Outdoor

Indoor
Path planning
Mobile manipulation
Clone real environment

Creating Environments

Built into Gazebo

3D Warehouse or
model editor

Image editor

Alignment and size
Move meshes to origin (0,0,0) when exporting
Stay consistent with units (preferably metric)

Materials and lighting
Ambient and diffuse color properties are important
Lighting requires outward facing normals
Improve texture quality before mesh quality

Efficient meshes
Reduce polygon count
Use normal maps for improved lighting

A Word on Meshes

Organizing Resources
Directory structure for a project

Meshes: [project_path]/Media/models
Images: [project_path/]Media/materials/textures
Materials: [project_path]/Media/materials/scripts

Environment variable
export GAZEBO_RESOURCE_PATH=[project_path]

API
gazebo::SystemPaths::AddGazeboPaths(string);

Efficient Environments

Static Models
Not dynamically simulated
Act only as collision objects
Static models can be animated

Reduce Joints
Create models using composite links

Add Visual Realism

Lighting
Limit number of lights, and reduce ambient light
Use directional lights for shadows
Desired effects requires parameter tuning

Custom shaders
Create and load vertex and pixel shader via material
scripts

Sky and fog
Add any material to a sky dome
Fog can add a horizon and add sense of distance

Robot Modeling

A collection of links, joints, sensors, actuators and plugins.

Link 2

What is a Robot (Model)?

Link 1

Link 3

Sensor

X

Y

X

Y

Model

J1
X

Y

X
Y

J2
g

Example: Mass Spring System

Simple mass spring system in Gazebo:

Example: SCARA Arm

Simplified arm model

Robot Models

Simple platforms
Built-in shapes
Mesh skinning

Realistic physical
properties

Meshes as collision objects
Mass and inertia properties
Surface friction
6 joint types

Full sensor suite
Laser range finders
Mono/Stereo cameras
Kinect
Contact
Joint force/torques

Why 3D Dynamics Simulator

Dynamics simulation
"Looks right" interactive mechanical
behaviors
Non-interactive higher fidelity dynamics

Visual simulation
3D image, range, depth sensor generation

Closing the loop between visual and dynamics
simulation.

What to Expect (Dynamics)

Motion
Newton-Euler equations.
First order time integrator.

Constraints
Frictionless joints.

Collision
Perfectly inelastic collision*.

Contact
Friction pyramid.

Modeling: URDF and SDF

How to specify a robot model
URDF format and SDF format

URDF vs SDF

URDF --> SDF converters
rosrun urdf2model -f <urdf> -o <sdf>

Contributing robot models
Soon to be released online model database

URDF SDF

● Tree
● Link --> Link transforms
● Link and Joint + "Extensions"

● Graph
● Model --> Link transforms
● Link, Joint, Sensors, Plugins,

Lights, Physics, Scene.

What are Links

Inertial (mass, moment of inertia)
The "M" in f=Ma for physics engines

Collision (geometry)
Used by collision engine to generate contact joints for
the physics engine

Visual (geometry)
Used by render engine to generate images for GUI and
camera or depth sensors

Joints

User defined joints

Dynamically created
Contact joints between objects

Created from colliding collision geometries
Limited to 20 contacts for each colliding pair by
default
Contact information accessible through Contact
Sensor

Type DOF

universal
ball

screw

2 rotational
3 rotational

1 trans. 1 rot.

Type DOF

revolute
prismatic
revolute2

1 rotational
1 translational

2 rotational

Sensors

Camera
Render to offscreen buffer

Kinect
Depth camera

Laser
CPU and GPU based ray casting

Contact
Generated by collision engine

RFID
Information generated from model positions

Force torque
Specific to joints at the moment

Efficient Robot Models

Physics (CPU):
Limit contacts (<physics max_contacts="3"/>)
Kinematic trees are better than loops
Reduce number of joints in a model

Collision (CPU):
Primitives are more efficient than trimeshes
Limit collision mesh size (< ~5k triangles per link)

Rendering (GPU):
Limit visual mesh size (< ~5k triangles per link)
Limit image/depth sensor resolution or rate

How to Improve Dynamics Accuracy

...with maximal (Cartesian) coordinate solvers such as ODE
or Bullet.

How to choose time step size:
Motor controller frequency driven.
First order Euler time stepping O(Δt).

How to tweak solver parameters:
<solver type="quick" iters="100"/>
Default 10 iterations for LCP solve, increase if
necessary.

Model physics of the real robot more closely
Account for more details. E.g. prismatic vs. screw.

Controlling the Robot Model

Graphical joint control widget in Gazebo
Direct force control.
PID position and velocity.

Programmatic control
Level of abstraction, hardware/software transparency.
World plugins: access to all models.
Model plugins: access to all joints and links.

Troubleshooting Models

Mesh is out of place or has improper scale
Recenter and scale mesh using 3D modeling
application
Enable "Show Collisions" in GUI to debug

Improper joint placement and rotation
Enable "Show Joints" in GUI to debug

Improper inertial values

Symptom: Model flies away, spins out of control
Cause: Interpenetration with surroundings
Solution: Step through simulation slowly. Check for
collisions, interpenetrations between model/ground.
Spawn model away from other objects.

Troubleshooting Models

Troubleshooting Models

Symptom: Model spins out of control
Cause: Large accelerations (f >> m)
Solution: Remove forces, e.g. disable plugins that sets
forces on joints or links, and see if problem goes away
Look for tiny inertia values.

Troubleshooting Models

Symptom: Model is jittery
Cause: Stiff system. Large mass ratio between
connected links
Solution: Reduce time step size or increase inner
iteration counts

Interfaces

Plugins

Programmatic interface to Gazebo
Types

System: Control the load and init process
World: All models and physics engine
Model: Joints and links
Sensor: Control data generation and processing

Use cases
System: Specify custom search paths
World: Dynamically change physics engine
Model: Joint controller, such as a differential drive
Sensor: Data filtering or add noise models

Creating Plugins

Reference
Gazebo wiki tutorials and API specification
Examples distributed with the gazebo sources

ROS plugins
Gazebo ROS package provides interface between
Gazebo and ROS framework
gazebo_plugins ROS package

Contribute plugins
Submit patches to Gazebo
Near future: Online database for plugins

Interprocess Communication

Topics
Usage nearly identical to ROS

PublisherPtr pub = node->Advertise<msg_type>(topic_name);
SubscriberPtr sub = node->Subscribe(topic_name, callback);

Topics vs plugins
Topics: Run server remotely, start & stop client
Plugins: Access to complete API, updates every cycle

Commandline Tools

Gazebo tools
System inspection: gztopic, gzstats
Insert and remove models: gzfactory

ROS tools
rosrun gazebo spawn_model
rosrun gazebo urdf2model

Getting Help

ROS Answers
answers.ros.org

Gazebo mailing list
gazebosim.org/support.html

Wiki and Tutorials
gazebosim.org/wiki

Contributing code
Submit patches (kforge.ros.org/gazebo/trac)
Send email to mailing list for suggestions

Questions

Differential Drive
Controls two joints attached to a chassis and wheels
Accepts velocity commands, produce joint torques
Example usage: Pioneer2dx mobile base

ROS PR2 Controller
gazebo_ros_controller_manager ROS plugin
Mimics the real PR2 motors at transmission level
Allows code developed in simulation run on a real PR2

Plugin Examples

Topic Examples

Graphical Interface
All communication between the server and client is
handled via topics

Player Interface
Plugins are loaded into Player which then communicate
to Gazebo via Topics

Command line tools
Report statistics and offer basic world control
functionality

